A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

نویسندگان

  • Carsten Carstensen
  • B. Daya Reddy
  • Mira Schedensack
چکیده

This paper introduces a novel three-field formulation for the Bingham flow problem and the relative named after Mosolov and low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the H1 error of the primal variable is bounded by the error of the L2 bestapproximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one. AMS subject classifications 65N30, 76M10 key words Bingham flow problem, Mosolov’s problem, nonconforming finite element methods, three-field formulation, mixed variational inequalities ∗Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D10099 Berlin, Germany; Department of Computational Science and Engineering, Yonsei University, Seoul, Korea †Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, South Africa ‡Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D10099 Berlin, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal adaptive nonconforming FEM for the Stokes problem

This paper presents an optimal nonconforming adaptive finite element algorithm and proves its quasi-optimal complexity for the Stokes equations with respect to natural approximation classes. The proof does not explicitly involve the pressure variable and follows from a novel discrete Helmholtz decomposition of deviatoric functions. Mathematics Subject Classification (2000) Primary 65N12 · 65N15...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

On Higher Order Approximation for Nonlinear Variational Problems in Nonsmooth Mechanics

This paper is concerned with the hp-version of the finite element method (hp-FEM) to treat a variational inequality that models frictional contact in linear elastostatics. Such an approximation of higher order leads to a nonconforming discretization scheme. We employ Gauss-Lobatto quadrature for the approximation of the nonsmooth frictiontype functional and take the resulting quadrature error i...

متن کامل

ar X iv : 1 71 0 . 03 44 7 v 1 [ m at h . N A ] 1 0 O ct 2 01 7 QUASI - OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS

We devise variants of classical nonconforming methods for symmetric elliptic problems. These variants differ from the original ones only by transforming discrete test functions into conforming functions before applying the load functional. We derive and discuss conditions on these transformations implying that the ensuing method is quasi-optimal and that its quasioptimality constant coincides w...

متن کامل

Nonconforming FEMs for an Optimal Design Problem

Some optimal design problems in topology optimization eventually lead to a degenerate convex minimization problem E(v) := ∫ Ω W (∇v)dx − ∫ Ω f v dx for v ∈ H1 0 (Ω) with possibly multiple minimizers u, but with a unique stress σ := DW (∇u). This paper proposes the discrete Raviart–Thomas mixed finite element method (dRT-MFEM) and establishes its equivalence with the Crouzeix–Raviart nonconformi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2016